Translation


+86-371-67829333

News

Features and Uses of ACSR Overhead Conductors

ACSR overhead conductors are steel-core aluminum stranded conductors. This bare conductor is used in overhead cables. It has the advantages of simple structure, easy erection and maintenance, low line cost and large transmission capacity.

Features of ACSR Overhead Conductors

ACSR overhead conductor is suitable for laying across rivers and other special geographical conditions. It has good electrical conductivity and mechanical strength and tensile strength. If ACSR cable is used, its tower distance can be increased and the numbers of tower pole can be reduced. Therefore, this conductor is widely used in overhead transmission and distribution lines of various voltage levels.

Steel is stronger than aluminum, which increases the mechanical tension on the conductor. Steel also has a lower elasticity and elongation. This can increase the mechanical load capacity of overhead cables. Steel-core aluminum stranded cables have a lower coefficient of thermal expansion under current load. These properties allow ACSR to sag considerably less than AAC conductors.

Aluminum alloys used for exterior stranding are typically 1350-H19 in the U.S. and Canada, and 1370-H19 elsewhere. Both of them have an aluminum content of 99.5% or more. Tempering of aluminum in the case of H19 means extra hard. To prolong the service life of the conductors used, the steel core is usually galvanized or coated with other materials to prevent corrosion. For different ACSR conductors, the diameter of both aluminum and steel varies.

ACSR cable still relies on the tensile strength of aluminum, it is simply reinforced by steel. Because of this, its continuous operating temperature is limited to 75 °C. ACSS cables, which rely entirely on the strength of steel, can be used at temperatures of up to 250 °C.

Upgrade of ACSR - ACCC Conductor

With the development of manufacturing technology in the cable industry, ACCC conductors using carbon fiber instead of steel cores were invented. Compared to ACSR cables, ACCC overhead cables are lighter in weight. This is because it uses a lightweight, small size carbon fiber composite as the core. Carbon fiber not only increases the overall load-bearing capacity of the cable, but also reduces the size of the core.

Compared to ACSR conductors of the same diameter, ACCC conductors provide double the current-carrying capacity. Because ACCC overhead cables can withstand temperatures up to 200 °C, they can effectively solve the problem of cable sag caused by high temperatures. In addition, thanks to its non-bimetallic construction, ACCC overhead cables are also corrosion resistant.

Existing overhead cables are less often upgraded by removing old lines and then erecting new towers. This method is not only costly, but also has a long construction period. This increases the project cost and extends the construction period to a certain extent. Long outages during the erection of new lines can also affect the number of available devices and the reliability of the power supply to the grid.

The choice of new overhead cables as direct replacements for the original cables both utilizes the original line equipment and minimizes retrofitting. Many of the current upgrades for ACSR overhead lines are direct replacements for ACCC conductors. However, the cost of ACCC cables is high, and if the requirements for cable capacity are not too high, it is still more economical to choose ACSR conductors.

ZMS Cable F

Recent Posts

Strong Demand Trend for Medical Fiber Optics Market in Europe

The European medical industry has witnessed significant advancements in recent years, driven by the integration…

4 weeks ago

What Industry Cables Are Used in a Rocket Launch from Start to Finish?

The successful launch of a rocket involves one of the most complex engineering feats imaginable,…

1 month ago

What Fiber Optic Materials Are Used to Produce a Fiber Optic Cable?

Fiber optic cables have become the backbone of modern telecommunications, offering high-speed data transmission over…

2 months ago

How Many Cores are the High Voltage Copper Cables Normally? What Are the Applications?

High voltage copper cables are essential components in the distribution and transmission of electrical power,…

2 months ago

What Are the High Voltage Lines Used in the Railroad System?

Railroad high voltage lines play a vital role in powering the railway systems that transport…

3 months ago

What is the Difference Between Single-Mode and Multimode Fiber Optic Cables?

Fiber optic cables are critical components in modern communication networks, enabling high-speed data transmission over…

3 months ago